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The 16-hour Clock that Strikes a Bell at the
Hoursof 16, 3, 6, 10, and 12.
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The clave Son rhythm of Cuba.



Some Ways of Representing the Clave Son.
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The 5th is the Box Notation Method devel oped
by Philip Harland at UCLA in 1962 also known
as TUBS (Time Unit Box System).



The “Clave Sori’ in Ancient Persian Notation.

Safi-al-Din “Al-sharafiyyeli 1252.
The Al-saghil-al-avval rhythm.




Measuring the Similarity of Rhythmes.

The Hamming distance between two rhythms
represented as binary sequences is the sum of the

number of places in the sequence where the symbolsin
both rhythms differ.

Put another way: it isthe minimum number of
substitutions required to change one sequence to the

Example. U2 e | |e ol | o] |e
Gahu J[e ° ° ® ®

distance= 4 0 0 O

Introduced by Richard Hamming in 1950.
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Another view of the Hamming distance.

Such Binary sequences may also be viewed as vectors
In a 16-dimensional space:

X =X1,X9,..., X16

Rumba [1]0]0]1][0[O[OJ1]J0[0J1]0]1]0]0[0O
Gahu 1/0/0/1/0/0/1]/0]0/0{1/0]/0]|0J1|0

Example:

Then the Hamming distance between X and Y is:

16
dH(X,Y) = Zl‘xi_yi‘



Sequence Comparisont.evenshteinDistance

Vladimir I. Levenshtein;'Binary codes capable of
correcting deletions, insertions, angeesals,
Cybernetics and Control Theory, 1966.

Popularly knavn as the'edit” distance.

Given two sequences (strings) of symbols:

A=ay, a,...,a, andB=b4, b, ,..., b, theLevenshtein

distancebetweenA andB is the smallest number of

Insertions, deletions, andsubstitutions (replacements)
required to changa into B.
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The father ofRussian
Information theory.




Sequence Comparison: Edits + Swaps Distance

R. A. Wagner and M. J. FishéfThe string-to-string
correction problem3. of the ACM, 1974.

Give anO(mn) dynamic programming algorithm for
computing thedit distance.

R. Lowrance and R. A. Agner“An extension of the string-
to-string correction problemJ. of the ACM, 1975.

They added thewap operation to thedit distance.

A swap interchanges twadjacentcharacters.

They also gve anO(mn) dynamic programming algorithm
for computing it.
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TheLongest Common Subsequence Problem
and the Edit (Levenshtein) Distance

Given two sequencesA = a4, a5 ,..., 8, and
S=5,% ., SpyWithm n. <
Sisasubsequenceof A if forsomel Ii;<is<...
<ipm nweilavealh:shforalll h | <
Given two sequences A = ay, 8, ,..., &, and

B =Dy, b, ,..., b, let v(A,B) denote the maximum
length of any subsequence common to A and B.

Let d(A,B) denote the edit (Levenshtein) distance
(total cost) between A and B with the following
operation costs: insertion = 1, deletion = 1, and
substitution = deletion + insertion = 2.

Then:
d(A,B) =2(n- v(A,B))



How Similar aretwo Random Sequences?

V. Chvatal and D. Sankoff, “Longest common
subsequences of two random seguences,”

J. Applied Probability, 1975.

Suppose A = a4, a5 ,..., 8, and

B =Dy, b, ,..., b, are sequences created by
random draws from an alphabet of size k,

(al letters occur with equal probability, and successive draws are
Independent).

They proved that the expected value of v(A,B) IsSis
asymptotically proportional to n:

lim E{v(AB)} _ C,
n - oo n
L et
d, = lim ELAAB))
k ——— n
Since
d(A,B) =2(n- v(A,B))
We have

d.=2(n-c)



The Swap-distance Between Rumba and Gahu.

Theswap-distance between twonythmsrepresented
asbinary sequenceaf symbols is defined as the
minimumnumberof between

adjacentone’s andzeio’s required to tansform one
rhythm into the other

Example:
Gahu Y °® °® ) ®
Rumba e ° °® Y

d(RG) = 3



Computing the Swap-distancein Linear Time.

Executing and counting the swaps is bad.

A=XXXXXXXX

T(n) = O(n?)

O(n) Algorithm

Convert the sequence of k onsets to a k-dimensional
vector of x-coordinates.

X:Ol 2 3 456 7 8 9101112 131415

A=X__X X X X

B= X X XX _ X

X, = (0, 3, 6, 10, 12)
Xg = (3, 7, 10, 11, 14)

Osyap(A, B)=3+4+4+1+2=14



Sequence Comparison with Block Reversals

Let A andB be two sequences oklements edx
over some alphabet set.

Define dA,B) as theminimumnumber oklement
substitutionsandblodk (subsequencepversals
needed to aainsformA to B, sud that no element is
iInvolved in moe than one opation.

(a swap is the smallest possible block reversal)

Rumba e ° °® o |0

Theorem: S. Muthukrishnan and S. Cenk
Sahinalp(2004)

d(A,B) may be computed in tin@&n log? n)



Sequence Comparison with Fuzzy Hamming
Distance

A. Bookstein, S. T. Klein and T. Raita, (2001)

The fuzzy (extended, generalized) Hamming
distance is an edit distance with three operations:

(1) insertion
(2) deletion
(3) shift (cost as afunction of A)

For two binary sequences A and B of n elements
each, d(A,B) is computed in time O(n?) time with
dynamic programming.

If only the shift is used with cost of shift = A, then
this distance becomes the swap distance.



The One-to-One Assignment Problem

Richard Karp and Shuo-Yen Li (1975) Discrete
Mathematics.

Let Sand T with T < Sbe two sets of points on the line.
They give an algorithm that computes a minimunm-
weight one-to-one assignment from Sto T that runsin
O(nlog n) time (and O(n) after sorting) where nisthe
sum of the cardinalities of the sets.

SO 2 Z 12
T\\ /
1 4 11

A minimum one-to-one assignment from S to T



The Directed Swap-Distance Between Two
Rhythms of Different Density

Miguel Diaz-Banez, Ganna farigu, Francisco
Gomez, Daid Rappaport, and Godfried Toussaint,
“El compas flamenco: A phgenetic analysis 2004

Thedirected swap-distandmetween twohythmsof
different densitys theminimumnumberof
betweeradjacentelementsrequired to

transform thélar ger” rhythm into thésmaller”

rhythm undertwo constaints:

(1) everyonset of thélar ger” rhythm must t&vel to
some onset of tHiemaller” rhythm,

(2) everyonset of thésmaller” rhythm musteceive
at least oneonset fom the‘lar ger” rhythm.

example 0 1 1 1 1
Seguiriya @ |®| |® ° °

v NS

Fandango |® ® o ®

swap-distanc¢SF) = 4



The Directed Swap-distance = the Restriction Scaffold
Assignment Problem in Computational Biology

A. Ben-Dor, R. Karp, B. Schwikowski, and R. Shamir
(2003) Journal of Computational Biology.
Algorithmthat runsin O(n) time for sorted points.
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The Surjection Distance Between two Point Sets

Thomas Eiter and Helkki Mannila (1997) Acta
|nformatica.

Give an algorithm that comgut% a minimal surjection
from Sto T that runsin O(n”) time, where n isthe sum
of the cardinalities of the sets.

0 2 7 12
S \ N
T
1 4 11
A surjection between S and T
0 2 7 12
S \/ / /
n
1 4 11

A minimal surjection between S and T



The Algorithm of Eiter & Mannila

Lemma:
Let F bea minimal surjection from Sto T. Then for any

s not equal to s If F(s) = F(s), then the distance from
S to F(s) Is not more than the distance from s; to any
oyther element of T.

Thelr algorithm uses a reduction to a minimun-wei ght
perfect matching in a suitable bipartite graph.

SO 2 V4 12
T\/ / /
1 4 11

A minimal surjection between S and T



The O(n?) Algorithm

J. Colannino and G. T. Toussaint (2005)
Quadrangle ineguality lemma:
Let Sand T be two sets of points on the line.

Let o(s;t) = |st].
Thenfora<binSandc<dinT

5(a,c) + 5(b,d) < 5(a,d) + 5(b,C)




The O(n?) Algorithm - continued

The algorithm uses a reduction of the directed
swap-distance problemto a shortest path
problemin a suitable directed acyclic graph.

SO 2 V4 12
T\/ / /
1 4 11

A minimal surjection between S and T

Sart




An O(n) Algorithm for the Directed-Swap
Distance for Sorted Points

J. Colannino, M. Damian, F. Hurtado, J. lacono,
H. Meijer, S. Ramaswami, and G. T. Toussaint
(2006)

MVia an extension of the one-to-one assignment
algorithm of Karp and Li (1975).
Shaded area is the cost of the assignment.

7 8 9 1011 13



TheLink Distance Between two Point Sets
(many-to-many matching)

T. Eiter and H. Mannila (1997), Acta Informatica.

Present an algorithm that computes the link distance
between Sand T that runsin O(n°) time, where n isthe
sum of the cardinalities of the sets.

A minimal linking between S and T



An O(n) Algorithm for the Link Distance
between two Sorted Point Sets

J. Colannino, M. Damian, F. Hurtado,
S Langerman, H. Meljer, S. Ramaswam,
D. Souvaine, and G. T. Toussaint (2007)

Present a dynamic programming algorithm that
computes the link distance between Sand T In
O(n) time, where n is the sum of the cardinalities
of two sorted sets.

Ao A A
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Lemma: For eachi > 0, A; contains a point g; such
that, in a minimum-cost many-to-many matching,
all pointsin A; than g; are matched to pointsin
A;_1, and all pointsin A, greater than g; are
matched to pointsin A, 1.



Chronotonic Representation of Rhythm - |

Kjell Gustafson, “ The graphical representation
of rhythm,” Oxford University, 1988.

3 views of the clave Son
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Chronotonic Representation of Rhythm - |1

Ludger Hofmann-Engl, “ Rhythmic similarity: A
theoretical and empirical approach,” Keele
University, 2002.

The clave Son as a chronotonic chain

I I I I I I I I I | o]

| | | | |
012 3 456 7 8 9 1011 12 13 14 15 16
Clave Son

| L 1 |
O 1 2 3 45 6 7 8 9 10111213 14 15 16




The Chronotonic Distance

Fandango

| | — | —
01 23 45 6 7 8 9 101112

Buleria

| | I |
01t 23 456 7 8 9 101112

L | I —
01t 23 456 7 8 9 101112

Thechronotonicdistance between

FandangoandBuleriais theareabetween
the two curves shown shadedlark blue.



All Pairwise Interval Durations (geodesic
distances) Contained in the Gahu Clave.

123456 78
Inter-onset histogram




Homometric Rhythms

A. Lindo Patterson,
“Ambiguitiesin the X-ray analysis of crystal
structures,” Physical Review, March, 1944.

Every n-point subset of aregular polygon with 2n
vertices is homometric to its complement.

1 2 3 4 1 2 3 4
Interval histograms



The Hexachordal Theorem

Theorem: Two complementary hexachords have

the same interval content.
First observed empirically: Arnold Schoenberg, ~ 1908.

pitch interval
histogram

1 2 3 4 5 6

interval size



The Hexachordal Theorem: Music-Theory Proofs

Theorem: Two complementary hexachords have

the same interval content.
First observed empirically: Arnold Schoenberg, 1908.

Proofs:
1. Milton Babbitt and David Lewin - 1959, topology
2. David Lewin - 1960, group theory

3. Eric Regener - 1974, elementary algebra

4. Emmanuel Amiot - 2006, discrete fourier transform




The Hexachordal Theorem: Crystallography Proofs

First observed experimentally: LinusPauling and M. D.
Shappell, 1930.

Proofs:

1. Lindo Patterson - 1944, claimed proof not published
2. Martin Buerger - 1976, image algebra

3. Juan Iglesias - 1981, elementary induction

4. Steven Blau - 1999, elementary induction




The Interval-content Theorem of |glesias

Juan E. Iglesigs
*On Pattersons g/clotomic sets and oto count
them? Zeitsdrift fUr Kristallographig 1981.

Theorem: Letp of theN vertices of a rgular
polygon inscribed on a circle be black dots, and
the remainingy = N - pvertices be white dots.
Let ny,» Npp @Ndny,,, denote the multiplicity of the
distance®f a specified lengtibetweernwhite-
white, bladk-bladk, andbladk-white vertices,
respectrely.

Then the follaving relations hold:
P =Npp *+ (1/2)py

q=Npw * (1/2Npy



Lemma: Any given duration value d occurs with
multiplicity N.

(1) If d =1 or d = N-1the multiplicity equals the number of
sides of an N-vertex regular polygon.

(2) If 1<d<N-1,andd and N are relatively prime, the
multiplicity equals the number of sides of an n-vertex
regular star-polygon.

(3) If d and N are not relatively prime then the multiplicity
equals the total number of sides of a group of convex

polygons. There are g.c.d.(d,N) polygons with N/g.c.d(d,N)
sides each.




Proof of Iglesias’ theoem:
For each duration value d

P = Npp + (V2)Nyy,

q = Ny + (Y2)Ny,

case 1 Ny + 2
Npw - 2
_——

/

change to white

Npp - 2
Ny + 2
case 2 S
change to white
Npp - 1
Ny T 1

>

case 3
/

change to white



lglesias’ Proof of Patterson’s Theorems

Theorem 1:If two different black sets form a homometric
pair, then their corresponding complementary white sets
also form a homometric pair.

Proof: If the black sets are homometric they must have the

same number of points.
Then, for each duration value d

P = Npp + (1/2)Np= N*pp + (L2)N*

q = Ny + (U2)Np= 0%y + (U2)N% ),

and thus
P-Qq="Ngp - Ny = N pp - Ny

Since the black sets are homometric Npy = N*
and thus Ny, = N

Theorem 2:If p = q the two sets are homometric.

Proof: If p=qthen

Npp + (Y2)Np= Ny + (1/2) N

and thus
Npp = Ny



Flamenco Music from Southern Spain

Characterized by rhythmic cycles called
compasoften marked by accented
clapping patterns.

Guajira Ll ® o o |0




From the Restaurant “ Al Aljarate” in Madrid
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The Music of Andalucia
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TheFive 12 -pulse Flamenco M eters

Fandango |® ® ® °
Solea ® o o o |o
Buleria ° oo o o
Seguiriya |®| |®| |® ® °

Guajira (@ ® o o (o




The SplitsTree Obtained from the
Directed-swap Distance M atrix

Fit=100.0% Buleria

Fandango
Guajira

Seguiriya

. BuleriaandSoleaform a very distinctluster
(only Buleriaand Soleahaveanacrusi3

» Fandango and Guaja form acentercluster

« S@uiriya is a singletorcluster



Reconstructing an “Ancestral” Rhythm from the
FlamencoMeterswith the Directed-svap Distance

Seguiriya

Fandango

Guajira Solea

Buleria
Fandango |® o ® ®
Solea ® o o o @
Buleria ® oo o |o
Seguiriya (®| |®| |® ° °
Guajira (@ ® o o |o

ancestral rhythm |® ® ® ® 0




Measuring the Similarity of M elody.

D. O’'Maidin, “A geometrical algorithm for
melodic diferencd’ 1998.

[] Models amelodyby arectilinear monotonic
pitch-duration function of time

1 Computes tharea-diferencebetween two

melodies.




Computing Area-difference Between Two M elodies.

G. Aloupis, TRevens, S. Largyman, T Matsul, A.
Mesa, YNuiez, D. Rappaport and Guksaint
WADS 2003

1 O(n) algorithm for fixecb.

[] O(n2 log n) for unrestrictedrigid motions.
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