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The 16-hour Clock that Strikes a Bell at the
Hours of 16, 3, 6, 10, and 12.
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The 16-hour Clock that Strikes a Bell at the
Hours of 16, 3, 6, 10, and 12.

The clave Son rhythm of Cuba.
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Some Ways of Representing the Clave Son.

The 5th is the Box Notation Method developed
by Philip Harland at UCLA in 1962 also known
as TUBS (Time Unit Box System).

.4
4

.

..C

....4
4

....4
4

[3 3 4 2 4]

binary sequence representation



The “Clave Son” in Ancient Persian Notation.

Safi-al-Din, “Al-sharafiyyeh,” 1252.
TheAl-saghil-al-avval rhythm.



Measuring the Similarity of Rhythms.

The Hamming distance between two rhythms
represented as binary sequences is the sum of the
number of places in the sequence where the symbols in
both rhythms differ.

Put another way: it is the minimum number of
substitutions required to change one sequence to the

Gahu

Rumba

✓✓ ✓ ✓
Introduced by Richard Hamming in 1950.

Example:

distance = 4



Another view of the Hamming distance.

Such Binary sequences may also be viewed as vectors
in a 16-dimensional space:

Gahu

Rumba 1 1 1 1

1 1 1 1 1

10 0 0 0 0 0 0 0 0 0 0

00000000000

X = x1,x2,..., x16

Example:

Then the Hamming distance between X and Y is:

dH X Y( , ) xi yi–
i 1=

16
∑=



 Sequence Comparison:LevenshteinDistance

Vladimir I. Levenshtein, “Binary codes capable of
correcting deletions, insertions, and reversals,”
Cybernetics and Control Theory, 1966.

Popularly known as the“edit” distance.

Given two sequences (strings) of symbols:
A= a1, a2 ,...,an andB=b1, b2 ,...,bm, theLevenshtein
distance betweenA andB is the smallest number of
insertions, deletions, andsubstitutions (replacements)
required to changeA into B.

example:

W A T E R

W I N E

The father ofRussian
information theory.



 Sequence Comparison: Edits + Swaps Distance

R. A. Wagner and M. J. Fisher, “The string-to-string
correction problem”J. of the ACM, 1974.

Give anO(mn) dynamic programming algorithm for
computing theedit distance.

R. Lowrance and R. A. Wagner, “An extension of the string-
to-string correction problem”J. of the ACM, 1975.

They added theswap operation to theedit distance.
A swap interchanges two adjacent characters.
They also give anO(mn) dynamic programming algorithm
for computing it.

C A N A L

P L A N



 The Longest Common Subsequence Problem
and the Edit (Levenshtein) Distance

Given two sequences A = a1, a2 ,..., an and
S = s1, s2 ,..., sm, with m �����������≤n.
S is a subsequence of A if for some 1 �����������≤i1 < i2 < ...
< im �����������≤n we have a

ih
= sh for all 1 �����������≤h �����������≤m.

Given two sequences A = a1, a2 ,..., an and
B = b1, b2 ,..., bn, let v(A,B) denote the maximum
length of any subsequence common to A and B.

Let d(A,B) denote the edit (Levenshtein) distance
(total cost) between A and B with the following
operation costs: insertion = 1, deletion = 1, and
substitution = deletion + insertion = 2.

Then:
d(A,B) = 2(n - v(A,B))



 How Similar are two Random Sequences?

V. Chvatal and D. Sankoff, “Longest common
subsequences of two random sequences,”
J. Applied Probability, 1975.
Suppose A = a1, a2 ,..., an and
B = b1, b2 ,..., bn, are sequences created by
random draws from an alphabet of size k,
(all letters occur with equal probability, and successive draws are

independent).
They proved that the expected value of v(A,B) is is
asymptotically proportional to n:

Let

Since
d(A,B) = 2(n - v(A,B))

We have
dk = 2(n - ck)

E v A B( , ){ }
n

---------------------------
n ∞→

lim ck=

dk
E d A B( , ){ }

n
----------------------------

n ∞→
lim=



The Swap-distance Between Rumba and Gahu.

Gahu

Rumba

Theswap-distance between tworhythmsrepresented
asbinary sequences of symbols is defined as the
minimumnumber of position interchanges between
adjacentone’s andzero’s required to transform one
rhythm into the other.

d(R,G) = 3

Example:



Computing the Swap-distance in Linear Time.

Executing and counting the swaps is bad.

A = x x x x x x x x _ _ _ _ _ _ _ _
B = _ _ _ _ _ _ _ _ x x x x x x x x

T(n) = O(n2)

O(n) Algorithm

Convert the sequence of k onsets to a k-dimensional
vector of x-coordinates.

A = x _ _ x _ _ x _ _ _ x _ x _ _ _
B = _ _ _ x _ _ _ x _ _ x x _ _ x _

XA = (0, 3, 6, 10, 12)
XB = (3, 7, 10, 11, 14)

dswap(A, B) = 3 + 4 + 4 + 1 + 2 = 14

X = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Sequence Comparison with Block Reversals

LetA andB be two sequences ofn elements each,
over some alphabet set.

Define d(A,B) as theminimum number ofelement
substitutions andblock (subsequence)reversals
needed to transformA toB,such that no element is
involved in more than one operation.

(a swap is the smallest possible block reversal)

Theorem: S. Muthukrishnan and S. Cenk
Sahinalp(2004)

d(A,B) may be computed in timeO(n log2 n)

Rumba



Sequence Comparison with Fuzzy Hamming
Distance

A. Bookstein, S. T. Klein and T. Raita, (2001)

The fuzzy (extended, generalized) Hamming
distance is an edit distance with three operations:

(1) insertion
(2) deletion
(3) shift (cost as a function of ∆)

For two binary sequences A and B of n elements
each, d(A,B) is computed in time O(n2) time with
dynamic programming.

If only the shift is used with cost of shift = ∆, then
this distance becomes the swap distance.

i

j

∆ = 4



The One-to-One Assignment Problem

Richard Karp and Shuo-Yen Li (1975) Discrete
Mathematics.

Let S and T with T ≤ S be two sets of points on the line.
They give an algorithm that computes a minimum-
weight one-to-one assignment from S to T that runs in
O(n log n) time (and O(n) after sorting) where n is the
sum of the cardinalities of the sets.

1 4 11

0 2 7 12
S

T

A minimum one-to-one assignment from S to T



The Directed Swap-Distance Between Two
Rhythms of Different Density

Miguel Diaz-Bañez, Giovanna Farigu, Francisco
Gomez, David Rappaport, and Godfried T. Toussaint,
“El compas flamenco: A phylogenetic analysis,” 2004.

Thedirected swap-distancebetween tworhythmsof
different density is theminimumnumber of position
interchanges betweenadjacentelements, required to
transform the“lar ger”  rhythm into the“smaller”
rhythm undertwo constraints:
(1) every onset of the“lar ger”  rhythm must travel to

some onset of the“smaller”  rhythm,
(2) every onset of the“smaller”  rhythm must receive

at least one onset from the“lar ger”  rhythm.

0 11 1
Seguiriya

Fandango

1example:

swap-distance(S,F) = 4



The Directed Swap-distance = the Restriction Scaffold
Assignment Problem in Computational Biology

A. Ben-Dor, R. Karp, B. Schwikowski, and R. Shamir
(2003) Journal of Computational Biology.
Algorithm that runs in O(n) time for sorted points.

0

correct
1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

1 1 136

0

incorrect
1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 17



The Surjection Distance Between two Point Sets

Thomas Eiter and Heikki Mannila (1997) Acta
Informatica.
Give an algorithm that computes a minimal surjection
from S to T that runs in O(n3) time, where n is the sum
of the cardinalities of the sets.

1 4 11

0 2 7 12

1 4 11

0 2 7 12

S

S

T

T

A surjection between S and T

A minimal surjection between S and T



The Algorithm of Eiter & Mannila

Lemma:
Let F be a minimal surjection from S to T. Then for any
si not equal to sj if F(si) = F(sj), then the distance from
si to F(si) is not more than the distance from si to any
oyther element of T.

Their algorithm uses a reduction to a minimum-weight
perfect matching in a suitable bipartite graph.

1 4 11

0 2 7 12
S

T

A minimal surjection between S and T

x1 x2 x3 x4

u1 u2 u3 D1

1

1 1 1

1
12 3

3
4 4

7 9
6

8

11



The O(n2) Algorithm

J. Colannino and G. T. Toussaint (2005)

Quadrangle inequality lemma:

Let S and T be two sets of points on the line.
Let δ(s,t) = |s-t|.
Then for a < b in S and c < d in T

δ(a,c) + δ(b,d) ≤ δ(a,d) + δ(b,c)

c d

a b
S

T



The O(n2) Algorithm - continued

The algorithm uses a reduction of the directed
swap-distance problem to a shortest path
problem in a suitable directed acyclic graph.

s1 s2 s3 s4

1

1

1

2
3

1

Start

3

4

1 4 11

0 2 7 12
S

T

A minimal surjection between S and T

t1

t2

t3



An O(n) Algorithm for the Directed-Swap
Distance for Sorted Points

J. Colannino, M. Damian, F. Hurtado, J. Iacono,
H. Meijer, S. Ramaswami, and G. T. Toussaint
(2006)

Via an extension of the one-to-one assignment
algorithm of Karp and Li (1975).
Shaded area is the cost of the assignment.

0

1 2

4 5

6 7 8 9

10 11 13S

T

0 1
2 4

5 6
7 8 9 10 11 13



The Link Distance Between two Point Sets
(many-to-many matching)

T. Eiter and H. Mannila (1997), Acta Informatica.

Present an algorithm that computes the link distance
between S and T that runs in O(n3) time, where n is the
sum of the cardinalities of the sets.

1 3

2 7
S

T

A minimal surjection between S and T

A minimal linking between S and T

6 8

7

1 3

2 7
S

T

6 8

7



An O(n) Algorithm for the Link Distance
between two Sorted Point Sets

J. Colannino, M. Damian, F. Hurtado,
S. Langerman, H. Meijer, S. Ramaswami,
D. Souvaine, and G. T. Toussaint (2007)

Present a dynamic programming algorithm that
computes the link distance between S and T in
O(n) time, where n is the sum of the cardinalities
of two sorted sets.

Lemma: For each i > 0, Ai contains a point qi such
that, in a minimum-cost many-to-many matching,
all points in Ai less than qi are matched to points in
Ai-1, and all points in Ai greater than qi are
matched to points in Ai+1.

S

T

A0

A1

A2

A3

A4



Chronotonic Representation of Rhythm - I

Kjell Gustafson, “The graphical representation
of rhythm,” Oxford University, 1988.

3 views of the clave Son
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Chronotonic Representation of Rhythm - II

Ludger Hofmann-Engl, “Rhythmic similarity: A
theoretical and empirical approach,” Keele
University, 2002.

The clave Son as a chronotonic chain

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Clave Son
16
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1
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16



The Chronotonic Distance

0 1 2 3 4 5 6 7 8 9 10 11 12

Fandango

0 1 2 3 4 5 6 7 8 9 10 11 12

Bulería

0 1 2 3 4 5 6 7 8 9 10 11 12

Thechronotonicdistance between
Fandango andBulería is thearea between
the two curves shown shaded indark blue.
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distances) Contained in the Gahu Clave.



Homometric Rhythms

A. Lindo Patterson,
“Ambiguities in the X-ray analysis of crystal
structures,” Physical Review, March, 1944.

Every n-point subset of a regular polygon with 2n
vertices is homometric to its complement.
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The Hexachordal Theorem

Theorem: Two complementary hexachords have
the same interval content.
First observed empirically: Arnold Schoenberg, ~ 1908.

pitch interval
histogram
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The Hexachordal Theorem: Music-Theory Proofs

Theorem: Two complementary hexachords have
the same interval content.
First observed empirically: Arnold Schoenberg, 1908.

Proofs:

1. Milton Babbitt and David Lewin - 1959, topology

2. David Lewin - 1960, group theory

3. Eric Regener - 1974, elementary algebra

4. Emmanuel Amiot - 2006, discrete fourier transform
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The Hexachordal Theorem: Crystallography Proofs

First observed experimentally: Linus Pauling and M. D.
Shappell, 1930.

Proofs:

1. Lindo Patterson - 1944, claimed proof not published

2. Martin Buerger - 1976, image algebra

3. Juan Iglesias - 1981, elementary induction

4. Steven Blau - 1999, elementary induction
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Juan E. Iglesias,
“On Patterson’s cyclotomic sets and how to count
them,” Zeitschrift für Kristallographie, 1981.

Theorem: Let p of theN vertices of a regular
polygon inscribed on a circle be black dots, and
the remainingq = N - p vertices be white dots.
Let nww, nbb, andnbwdenote the multiplicity of the
distancesof a specified length betweenwhite-
white, black-black, andblack-white, vertices,
respectively.

Then the following relations hold:

p = nbb + (1/2)nbw

q = nww + (1/2)nbw

The Interval-content Theorem of Iglesias



Lemma: Any given duration value d occurs with
multiplicity N.

(1) If d = 1 or d = N-1 the multiplicity equals the number of
sides of an N-vertex regular polygon.

(2) If 1 < d < N-1, and d and N are relatively prime, the
multiplicity equals the number of sides of an n-vertex
regular star-polygon.

(3) If d and N are not relatively prime then the multiplicity
equals the total number of sides of a group of convex
polygons. There are g.c.d.(d,N) polygons with N/g.c.d(d,N)
sides each.
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Proof of Iglesias’ theorem:
For each duration value d

p = nbb + (1/2)nbw

q = nww + (1/2)nbw

case 1

change to white

change to white

change to white

case 2

case 3

nww + 2
nbw - 2

nbb - 2
nbw + 2

nbb - 1
nww + 1



Iglesias’Proof of Patterson’s Theorems

Theorem 1: If two different black sets form a homometric
pair, then their corresponding complementary white sets
also form a homometric pair.

Proof: If the black sets are homometric they must have the
same number of points.
Then, for each duration value d

p = nbb + (1/2)nbw= n*bb + (1/2)n*bw

q = nww + (1/2)nbw= n*ww + (1/2)n*bw

and thus
p - q = nbb - nww = n*bb - n*ww

Since the black sets are homometric nbb = n*bb
and thus nww = n*ww

Theorem 2: If p = q the two sets are homometric.

Proof: If p = q then

nbb + (1/2)nbw= nww + (1/2)nbw

and thus
nbb = nww



Flamenco Music from Southern Spain

Characterized by rhythmic cycles called
compás, often marked by accented
clapping patterns.

Guajira



From the Restaurant “Al Aljarate” in Madrid



The Music of Andalucia

Soleares
Bulerias
Seguiriyas

CUBA

Guajiras



The Five 12 -pulse Flamenco Meters

Fandango

Soleá

Bulería

Guajira

Seguiriya



The SplitsTree Obtained from the
Directed-swap Distance Matrix

● Bulería andSoleá form a very distinctcluster.
(onlyBulería andSoleá haveanacrusis)

● Fandango and Guajira form acenter cluster.

● Seguiriya is a singletoncluster.

Guajira

Soleá

Seguiriya

Fandango

Fit=100.0% Bulería



Reconstructing an “Ancestral”  Rhythm from the
Flamenco Meters with the Directed-swap Distance

Guajira Soleá

Seguiriya
Fandango

Bulería

11
6

7

5

Fandango

Soleá

Bulería

Guajira

Seguiriya

ancestral rhythm



Measuring the Similarity of Melody.

D. O’Maidín, “A geometrical algorithm for
melodic difference,”  1998.

Models amelody by arectilinear monotonic
pitch-duration function of time.

Computes thearea-difference between two
melodies.

✓

✓

t1 t2



Computing Area-difference Between Two Melodies.

G. Aloupis, T. Fevens, S. Langerman, T. Matsui, A.
Mesa, Y. Nuñez, D. Rappaport and G. Toussaint
WADS 2003

O(n) algorithm for fixedθ.

O(n2 log n) for unrestricted rigid motions.

✓
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θ


